

King Abdulaziz University Science Faculty of Girls Statistics Department
Statistics Department Exam #1 Second term
Stat 352 1432-1433 H Name:
Question 1
1- The random process $X(t)$ is given by
$X(t) = Y \cos(2 \pi t) \ t \ge 0$
where <i>Y</i> is a random variable that is uniformly distributed between 0 and 2.
Find the expected value and autocorrelation function of $X(t)$.
2- Prove that:
$C_{XX}(t,s) = E[\{X(t) - \mu_{X(T)}\}\{X(s) - \mu_{X}(s)\}]$
-D (t, s) u (t) u (s)
$= R_{XX}(t,s) - \mu_X(t)\mu_X(s)$

Question 2						
Choose the best answer for each questions of the following:						
1- If $X(t)$ and $X(s)$ are	e independent and w	we have $C_{XX}(t,s)=0$,	, which means that			
X(t) and $X(s)$ are						
A) Uncorrelated	B) Correlated	C) Autocorrelated	D) Crosscorrelated			
2 is a	process whose statis	stical properties do not	vary with time.			
A) Discreet- time ran	ndom processes	C) Continuous- time	random processes			
B) Stationary random	m processes	D) Chain random pr	ocesses.			
3- The set of all poss	sible values of $X(t, s)$) forms the				
A) State space, E, of the random process.						
B) Parameter space,	T, of the random pro	ocess.				
C) Sample space, S, of the random process.						
D) Event space.						
4- A random process is also called						
A) Chain processes.		B) Probability proces	s			
C) Stationary processes		D) Stochastic process				
5- If $R_{XY}(t, s) = 0$ for all t and s, we say that $X(t)$ and $Y(t)$ are						
A) Uncorrelated	B) Correlated	C) Orthogonal	D) Dependant			

6- If the state space, E,	is continuous, the	e process is called a				
A) Discreet- time rando	om processes	C) Continuous- time random processes				
B) Discrete-state rando	m process.	D) Continuous-state random process				
7- A random process $X(t)$ is called a second order process if for						
each $t \in T$.						
A) $E[X^2(t)] < \infty$	$\mathrm{B})E[X^2\left(t\right)]\leq \infty$	C) $E[X^2(t)] > \infty$	D) $E[X^2(t)] \ge \infty$			
8- If a random process	is defined by					
$X(t) = K\cos wt,$	$t \ge 0$					
where w is a constant and K is uniformly distributed between 0 and 2. Then						
A) $E[X(t)] = K\cos wt$		B) $E[X(t)] = E[K]$	+ E [cos wt]			
C) $E[X(t)] = K E [\cos$	wt]	D) $E[X(t)] = \cos w$	rt .			
9- For a wide-sense stationary process $X(t)$, $E[X(t)]$ (constant)						
A) Continuous	B) Constant	C) Periodic	D) Variable			
10- If X(t) is a strict-sense stationary process, then the autocorrelation and						
autocovariance functions do not depend on t						
A) Do not depend on τ		B) Do not depend on s				
C) Do not depend on t		D) Depend on t	D) Depend on t			

good luck – Dr. F. Algashgari 26/4/1433

Type equation here.

Some important formulas

Uniform

IF
$$X \sim Unif(a, b)$$

$$f(x) = \frac{1}{b-a}$$
, $E[X] = \frac{a+b}{2}$, $Var(X) = \frac{(b-a)^2}{12}$

Some Trigonometric Identities

$$\sin A \cos B = \frac{1}{2} \{ \sin (A + B) + \sin (A - B) \}$$

$$\cos A \cos B = \frac{1}{2} {\cos (A - B) + \cos (A + B)}$$

$$\sin A \sin B = \frac{1}{2} {\cos (A - B) - \cos (A + B)}$$